Challenged to reduce energy consumption, facility managers are installing variable frequency drives (VFDs, also known as inverters) in heating, ventilation, and air conditioning (HVAC) systems. By allowing motors to run at less than full speed, these drives can yield energy savings of 20-30%, but they also induce currents that can damage bearings and shorten motor life. The resulting repair costs can wipe out any savings from their use. To make HVAC systems sustainable as well as energy-efficient, a reliable method of bearing protection is required.

VFD-Induced Currents Destroy Bearings, Kill Motors

Many HVAC fans and pumps run continuously, but often at reduced loads. Because the energy consumption of such devices correlates to their flow rate cubed, the motors that drive them will use less power if controlled by a VFD. In fact, reducing a fan’s speed by half cuts the horsepower needed to run it by a factor of eight. In light of this, throttling mechanisms that restrict the work of a motor seem old-fashioned and wasteful.

Although the energy-saving potential of VFDs was never in dispute, for years the true cause of VFD-induced bearing failure was often misdiagnosed. Eventually, repair shops and testing consultants proved that the high peak voltages, fast voltage rise times, non-sinusoidal shaft currents, and parasitic capacitance associated with typical pulse-width-modulated VFDs lead to the cumulative erosion of bearings. Since many of today’s motors have sealed bearings to keep out dirt and other contaminants, electrical damage has become the most common cause of bearing failure in VFD-controlled AC motors.

Without mitigation, voltages repeatedly build up on the motor shaft to a certain threshold, then discharge in short bursts along the path of least resistance, which all too often runs through the motor’s bearings. The discharge rate tends to increase with carrier frequency.

Continued discharges result in the pitting (Figure 1) of the balls and race walls through electrical discharge machining (EDM). Concentrated pitting at regular intervals along the race wall can cause washboard-like ridges called fluting (Figure 2), a source of vibration and noise that can reverberate through ductwork. By the time such damage can be heard, bearing failure is often imminent.

NEMA Standards Call for Shaft Grounding

Standards issued by the National Electrical Manufacturers Association (NEMA) highlight the need for extra bearing protection for VFD-driven motors.

NEMA Standard MG1, Section IV, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors, (to be addressed by Construction Specifications Institute specification 23 05 13 for HVAC motors), recommends bearing insulation at one end of the motor if the NEMA motor frame size is 500 or larger and the peak shaft voltage is greater than 300 millivolts. In these larger motors, bearing damage may be due in part to magnetic dissymmetries that result in circulating end-to-end shaft currents.
For smaller motors, the same standard recommends insulating both bearings with high-impedance insulation or installing shaft grounding brushes to divert damaging currents around the bearings. For these motors, a VFD can generate high-frequency common mode voltage, which shifts the three-phase winding neutral potentials significantly from ground. Because the damaging voltage oscillates at high frequency and is capacitively coupled to the rotor, the current path to ground can run through either one bearing or both.

The NEMA standard is quick to point out, however, that bearing insulation will not prevent damage to other connected equipment. When the path to the bearings is blocked, the damaging current seeks another path to ground. That other path is often through a fan, pump, compressor, air handler, gearbox, encoder, break motor, or other piece of connected equipment, which can consequently wind up with bearing damage of its own.

Ironically, some products designed to protect bearings from electrical damage, such as conventional spring-loaded grounding brushes, require extensive maintenance themselves. Others, such as ceramic bearings, can shift damage to connected equipment. Many so-called “inverter-duty” motors offer beefed-up winding insulation, but this insulation does nothing to guard against bearing damage. If they are to be truly ready for use with VFDs, these motors also need bearing protection.

One of the most promising protective devices uses the principles of electron tunneling, field emission of electrons, and ionization to safely and efficiently bleed off damaging currents. Installed around a motor’s shaft, the maintenance-free AEGIS® SGR Bearing Protection Ring provides a very-low-impedance path from shaft to ground, bypassing the motor’s bearings.

As preventive maintenance for motors already in service, the ring can be quickly and easily retrofitted onto any NEMA or IEC motor regardless of shaft size, horsepower, or end-bell protrusion using conducive epoxy and/or a new Universal Mounting Kit. The conductive microfibers that line its entire inner circumference in two rows, completely surrounding the motor shaft, boost the ring’s
electron transfer rate. Once installed, the ring requires no maintenance and lasts for the life of the motor, regardless of rpm. Installed on a VFD-controlled motor, it qualifies as sustainable technology under the Federal Energy Management Program.

The ring has been proven in hundreds of thousands of installations. HVAC applications for the AEGIS® SGR include rooftop systems, indoor and outdoor air handling units, ventilation fans, fan walls, air- or water-cooled chillers, chilled water and other pumps, condensing fans, and compressors [Figure 3].

Shaft Grounding Proven Effective on Rooftop Unit

Electro Static Technology (EST), the manufacturer of the AEGIS® SGR, recently demonstrated the ring’s effectiveness on a rooftop air conditioning unit typical of those installed on commercial buildings. EST technicians took voltage readings from one of the unit’s VFD-controlled HVAC motors using a voltage probe and a portable oscilloscope — both before and after installing the ring on the motor’s shaft.

The 15 HP motor runs a belt-driven fan in a packaged rooftop HVAC unit [Figure 4]. In a continuous 60-μsec trace with the motor running at 3,600 rpm (80 Hz output), discharges from the shaft were 44.8 volts peak-to-peak, high enough to cause pitting of the motor’s bearings (oscilloscope settings: 10v/div, 5 msec/div). After the grounding ring was installed, a follow-up test at 3,600 rpm showed that discharges had dropped to only 3.76 volts peak-to-peak [Figure 5], well below levels that damage bearings (oscilloscope settings: 2v/div, 500 μsec/div).

Another Success With Hospital Air Handling Unit

Another recent test of the AEGIS® SGR took place at a community hospital in a suburb of Chicago. A hospital has many reasons to strive for zero motor failures and 100% uptime. Reliable heating and cooling are important for patient comfort, and continuous ventilation is vital for promoting sterility and limiting infections, especially in operating rooms, intensive-care units, quarantine areas, and laboratories.

This time, the motor was in the building’s basement. The TECO 254T 3-phase TEFC motor, controlled by a 480-volt VFD (60 Hz output), runs a fan in an air handling unit for several operating rooms [Figure 6]. EST technicians first used a voltage probe and oscilloscope to confirm that VFD-induced currents were indeed building up on the motor shaft and discharging through the bearings at voltage spikes high enough to cause pitting. The peak-to-peak reading was 11.4 volts (oscilloscope settings: 2v/div, 200 μsec/div).

Follow-up readings after the ring was installed showed that the AEGIS® SGR had lowered shaft-voltage discharges by 83%.

Because the ring was by now effectively channeling harmful shaft currents away from bearings to ground, the new peak-to-peak reading was negligible (1.92 volts), too low to damage bearings (oscilloscope settings: 2v/div, 100 μsec/div).

EST has recommended that the hospital install AEGIS® SGRs on all of its VFD-driven motors to prevent future bearing damage. The ring can be installed on either end of the motor, but the simplest installation is to slide the ring over the drive end and fasten it to the end bell. This can be easily accomplished using the new AEGIS® Universal Mounting Kit (“U-Kit”) [Figure 7], which simplifies mounting on virtually any AC motor shaft. The kit includes the proven AEGIS® grounding ring, brackets, and hardware.

While retrofits are still the most common way to protect bearings from VFD-induced shaft currents, a small...
A TECHNICAL WHITE PAPER

number of forward-thinking OEMs are now offering motors with shaft grounding rings factory installed.

Conclusion

For too long, the importance of shaft grounding to protect motor bearings has been ignored or severely underestimated. All VFD-driven motors are vulnerable to electrical bearing damage. A savvy specifier will choose new motors that are truly equipped for use with today’s fast-switching VFDs — those with adequate protection against electrical bearing damage as well as winding damage. But for motors already in service, retrofitting with an economical device such as a shaft grounding ring is the best approach.

Operations and maintenance costs can account for 60-80% of a facility’s life-cycle costs. When HVAC equipment does not have to be repaired or replaced as often, that percentage drops significantly. VFDs hold the promise of sizable energy savings, but without effective, long-term bearing protection such as the AEGIS® SGR Bearing Protection Ring, those savings could be wiped out by high maintenance costs. By diverting bearing currents safely to ground, AEGIS® SGRs extend motor life and thus ensure the reliable, long-term operation of VFD-driven motor systems, locking in energy savings to make these systems sustainable and truly “green.”

Figure 7: The Universal Mounting Kit includes brackets and hardware that simplify mounting of the AEGIS® SGR Bearing Protection Ring.