

AEGIS® Shaft Voltage Tester™ Digital Oscilloscope

User Manual

V1.2

Declaration

- 1. Copyright Electro Static Technology, 2016. All rights reserved.
- 2. The information in this manual replaces all previously published information.
- 3. The contents of this manual may not be copied, extracted or translated without permission by the company.

Safety Information

Carefully read the following safety information before using your oscilloscope.

Specific warning and caution statements appear throughout the manual, wherever they apply.

A"Warning" identifies conditions and actions that pose hazard(s) to the user. A"Caution" identifies conditions and actions that the user should notice.

The following international symbols are used on the oscilloscope and in this manual:

Hazardous Voltage

Protective Earth Ground

Warning

Power Switch

Earth

Ground

- Use only insulated voltage probes, test leads and adapters supplied with the oscilloscope, or accessories recommended by Electro Static Technology.
- Before use, inspect voltage probes, test leads, and accessories for mechanical damage and replace when damaged.
- Always connect the battery charger to the AC outlet before connecting it to the oscilloscope.
- Do not apply voltages higher than 600 V from earth ground to any input when using scope ports in a CAT ||| environment. Do not apply voltages higher than 1000 V from earth ground to any input when using scope ports in a CAT || environment.
- Do not apply input voltages above the rating of the instrument. Use caution when using 1:1 test leads because the probe tip voltage will be directly transmitted to the oscilloscope.
- Do not apply voltages that higher than 300 V from earth ground to any input when using multimeter ports in a CAT ||| environment. Do not apply voltages that higher than 600 V from earth ground to any input when using multimeter ports in a CAT || environment.
- Do not apply voltages that higher than 300 V from earth ground to the isolated inputs when using multimeter ports in a CAT III environment. Do not apply voltages that higher than 600 V from earth ground to the isolated inputs when using multimeter ports in a CAT II environment.

• Do not insert metal objects into connectors.

Use of the oscilloscope in a manner not specified may impair the protection provided by the equipment. Before use, always inspect the test leads for mechanical damage and replace damaged test leads!

Whenever it is likely that safety has been compromised, the oscilloscope must be turned off and disconnected from the line power. The matter should then be referred to qualified personnel.

Standard probe 10:1 supports CAT II 400V.

Optional probe supports CAT $\rm II\,$ 1000V and CAT $\rm III\,$ 600V

Safe Operation of the Battery

The AEGIS-OSC-9100 can be used to test floating signal when running on battery. When using both channels to test floating signal, both channels should be connected to the same earth ground, because the ground of the two channels is connected.

Marning:

Do not connect the ground spring to voltages higher than 42 V peak or 30Vrms from earth ground.

Introduction to the AEGIS-OSC-9100

The AEGIS-OSC-9100 is a high performance handheld digital oscilloscope with a range of advantages. It is small and easy to carry, has a long battery life, and boasts AEGIS[®] One-Touch[™] screen capture capability. It is more than adequate to the needs of measurement in the field.

Function Characteristics

- The AEGIS-OSC-9100 combines the functions of dual-channel oscilloscope, multimeter, and recorder with trend plots.
- Each channel can handle voltages as high as CAT II 300V and CAT III 150V. Standard probe: 10X CATII 400V
 Optional probe: 10X CAT II 1000V and 10X CAT III 600V
 Oscilloscope and multimeter safety grade is CAT II 600V and CAT III 300V
- 5.7 inches color TFT LCD.
- Maximal bandwidth 100MHz, real time sampling rate50GSa/s, and memory depth 2Mpts.
- Multimeter display resolution of 6000 points; can measure voltage, current, resistance, capacitance, diode, and continuity.
- Produces oscilloscope and multimeter trendplots, scope includes waveform recorder.
- 3 types of trigger mode: auto, normal and single; 5 types of trigger type: edge, pulse, video, slope and alternative.
- 32 types of auto-measurement function and 3 types of cursor measure mode.
- 5 kinds of digital filter mode: +, -, *, /, FFT.
- Unique digital filter function and waveform recording function.
- 2 groups of reference waveform, 20 groups of common waveform, 10 groups of settings inside Save/Recall; settings, CSVs, and images (.BMP) can be saved to and retrieved from USB flash drive.
- Standard configuration interface: USB Device, USB Host.
- With its lithium battery and small size, the scope is easy to carry and work with in the field

Accessories

- Quick Start Guide
- A product guaranty card
- A certification
- Two 1:1/10:1 probes
- An AC adapter
- Meter pens for multimeter
- USB probe calibration dongle

Optional Probe

- 100MHz high-voltage safety probe CAT II 1000V,CAT III 600V
- 200MHz high-voltage safety probe CAT II 1000V,CAT III 600V

Table of Contents

Safety Information	3
Safe Operation of the Battery	5
Introduction to the AEGIS-OSC-9100	6
Function Characteristics	6
Accessories	7
Chapter 1 Introduction	10
Introduction to the Front Panel and User Interface	
Function Check and Probe Calibration	
Chapter 2 Using the Scope	14
Menu and Control Buttons	14
Automatic Settings	
CH1/CH2 Channel Functions	
Scope Function Menu	
Signal Acquisition	
Display System	20
Math Waveform	
Horizontal System	24
Reference waveform Cursor and Measure System	
Cursor measure	27
Measuring other Parameters Trigger System	
Save and Recall System	41
Utility System	46
Chapter 3 Using the Multimeter	
Making DC and AC Voltage Measurement	53
Making Resistance Measurements	54
Making Diode Measurements	
Making Continuity Measurements	
Making Capacitance Measurements	
Making DC and AC Current Measurements	

Chapter 4 Using the Recorder Functions	. 59
Oscilloscope Trend Plot	60
Waveform Recorder	63
Multimeter Trend Plot	66
Chapter 5 Prompts and Troubleshooting	69
System Prompt Messages	69
Troubleshooting	71

Chapter 1 Introduction

About this Chapter

This chapter will help you:

- Understand the front panel and user interface
- Perform a quick function check
- Calibrate the probe (compensation)

Introduction to the Front Panel and User Interface

The first step is to get an understanding of the front panel before you operate the scope. The following figures will introduce you to the buttons and ports of the AEGIS-OSC-9100.

Figure 1-1 Front Panel

Description

- 1. power on/off key
- 2. CH1 vertical range and position key
- 3. CH1 on /off key
- 4. Scope, Meter, Recorder function keys
- 5. option keys
- 6. Handle
- 7. LCD
- 8. LOGO
- 9. BW and sample rate

- 10. menu on/off key
- 11. arrow keys
- 12. Auto, Run/Stop, Cursor/Measure function keys
- 13. CH2 on/off key
- 14. Trigger, User, Save/Recall function keys
- 15. CH2 vertical range and position keys
- 16. time base and horizon position keys
- 17. multimeter input ports

Notes:

The arrow keys include these functions: direction keys, moving trigger level, setting the trigger level to zero, choosing menu, setting horizontal position to zero, moving cursor. **Note**: When navigating through the scope's menus, the blue right arrow key acts as an "enter" button to finalize your selection.

Figure 1-2 Side Panel

Description

- 1. USB Device
- 2. USB Host
- 3. power input port

[©]Electro Static Technology

Figure 1-3 User Interface

Description

1. Trigger state

Armed: The scope is acquiring pre-trigger data. It will ignore all triggers in this state.

Ready: The scope has sampled all pre-trigger data and is ready to accept atrigger.

Trig'd: The scope has been triggered and is acquiring post-trigger data.

Stop: The scope stops sampling data. (Activate/deactivate with Run/Stop button.)

Auto: The scope is sampling data with no trigger under automatic mode. (Activate with the Auto button.)

Scan: The scope samples and displays waveform under scan mode.

- 2. Shows location of current waveform in the memory
- 3. Shows the trigger position in the memory
- 4. **9**: Print Key option set to print figure **9**: Print Key option set to save figure
- 5. 🐷 : USB Device option set to computer 🚳 : USB Device option set to printer
- 6. Shows power state
- 7. Shows current time
- 8. Horizontal position
- 9. Frequency Counter
- 10. Shows the trigger level
- 11. Shows the time base
- 12. "B" indicates bandwidth limit is activated

- 13. Channel's vertical range (volts/div)
- 14. Channel's coupling state (AC, DC...)
- 15. "2" indicates Channel 2
- 16. "1" indicates Channel 1
- 17. "T "shows the trigger level

Function Check and Probe Calibration

Function Check

A function check can be done to make sure the scope is working normally. To do this, follow these steps:

- 1. Turn on the scope. It performs several self-checks
- 2. Connect the probe to the **CH1** of the product. Align the slot of the probe connector with the bump on the CH1 BNC, push down, and twist right to lock the probe
- 3. Plug the probe calibration dongle into the small USB port on the scope, and connect the probe tip and reference lead to its prongs
- 4. Press [Auto]. Within a few seconds, you should see a series of square waves with 1 kHz frequency and ~3V amplitude peak-peak.
- 5. Press [CH1] twice to turn off Channel 1, then press [CH2] to display Channel 2. Repeat steps 2 and 3 to ensure Channel 2 is also working properly.

Probe Calibration (compensation)

When you connect a probe to your scope for the first time, please make the following calibration to adjust the probe to the scope's channel. Probes without compensation or compensation warp may lead to imprecise or falsemeasurements.

You can perform these adjustments manually to match your probe with the input channels.

- 1. Set the probe option attenuation in the channel menu to 10X and connect the probe to channel 1 on the scope. If you use the probe hook-tip, make sure that the hook-tip is fixed on the probe firmly.
- 2. Attach the probe tip to the **Probe Comp~3V** connector and the reference lead to the **Probe Comp Ground** connector. Display the channel and then push [Auto]
- 3. Check the shape of the waveform displaying on the screen.

Under-Compensated Correctly Compensated Over-Compensated

Please adjust your probe or repeat all the operations above if necessary. 4.

Multimeter Probe Caution

To avoid damaging your multimeter, you must use the correct input jack when making current, voltage, or other measurements. For voltage, resistance, and capacitance measurements, always use the right-most jack.

Chapter 2 Using the Scope

About this Chapter

This chapter provides a step-by-step introduction to the oscilloscope functionality of the AEGIS-OSC-9100. This introduction gives basic examples to show how to use the menus and perform basic operations without covering all of the scope's capabilities.

In order to use the scope effectively, you need to know about its buttons, menus, and functions, including menu and control buttons, connector and control, auto-settings, Scope, measurement system, trigger system, storage system and utility system.

Menu and Control Buttons

	4
CH1, CH2	Channel menu
Acquire	Sample menu
Display	Display menu
Math	Math menu
Horizon	Horizon menu
Ref	Reference waveform menu
MENU	Open/close current menu
Auto	Automatic setting control menu
Run/Stop	Pause/unpause data collection
Cursor	Cursor menu
Measure	Automatic measurement menu
Trigger	Trigger menu
Save/Recall	Save/Recall menu & One-Touch [™] screen capture
User	Utility menu

Table 2-1 Function Menu

Automatic Settings

When measuring unknown signals of unknown voltage and frequency, you can use the automatic setting function.

Example: Automatic Setting Application

- 1. Input a signal to CH1 or CH2 and then press [Auto].
- 2. The scope adjusts its settings automatically to display the best peak-peak, average, period, frequency and other information according to the characteristics of the signals.
- 3. If necessary, you can manually adjust the time base and voltage range to obtain a better view of a waveform.

Figure 2-1 Automatic Setting

CH1/CH2 Channel Functions

Press [CH1]/ [CH2] to enter CH1/CH2 channel menu.

Coupling	BW Limit	Volts/Div	Probe	Next Page
AC	Off	Coarse	1X	Page 1/2

Figure 2-2 Channel Menu 1

Option	Setting	Instruction
	DC	DC passes both AC and DC
	DC	components of the input signal.
Coupling		AC blocks the DC component of
Couping	AC	the input signals and attenuates
		signals below 10 Hz.
	GND	GND disconnects the input signal.
		Limit the bandwidth above 20M to
B\\/ Limit	On	reduce display noise; filter the signals to
	Off	reduce noise and other unwanted high
		frequency components.
	Coarse	Change the range of voltage by .1-2-5
V/div	COalse	sequence.
V/GIV	Fine	Fine changes the resolution by small
		steps under the coarse settings.
Probe	1X, 5X, 10X, 50X,	Set to match the type of probe you are
11000	100X, 500X, 1000X	using to ensure correct vertical readouts.
Next Page	Page1/2	Enter the second page of CH1/CH2
Next age	i aye i/z	menu.

Table 2-2 CH1/CH2 function Menu 1

Invert			Next Page
Off	Filter	ToZero	Page 2/2

Figure 2-3 Channel Menu 2

Table 2-3 CH1/CH2 Function Menu 2

Option	Setting	Instruction
Invert	On/Off	Turn on/off invert function.
Filter		Enter the FILTER menu.
To Zero		Set waveform vertical position and trigger level to zero.
Next Page	Page 2/2	Return to the first page of CH1/CH2 menu.

Filter	Туре	UppLimit	
On	₽→f	5.00MHz	Return

Figure 2-4 Digital Filter Function Menu

Option	Setting	Introduction
Digital Filtor	On	Turn on the digital filter.
Digital Filler	Off	Turn off the digital filter.
	t⊐⊸f	Setup as LPF (Low Pass Filter).
Type	tf	Setup as HPF (High Pass Filter).
туре	tf	Setup as BPF (Band Pass Filter).
	Þ-G-f	Setup as BRF (Band Reject Filter).
Llop Limit		Use the up and down arrow keys to set
Opp_Limit		Upp_Limit.
Low Limit		Use the up and down arrow keys to set
		Low_Limit.
Return		Return to the CH1 or CH2 menu.

Table 2-4 Digital Filter Function Menu

Example: Digital Filter

- 1. Input a signal to CH1 and press [AUTO].
- 2. Press [CH1] to enter CH1 menu.
- 3. Press **F5** to enter the second page of the CH1 menu.
- 4. Press F3 to enter the digital Filter function.
- 5. Press **F2** to choose a filter type. For example: input a signal with BW 20M and choose **Upp_Limit**.
- 6. Use up and down arrow keys to set the filter range.
- 7. Press F1 to turn on the filter

Figure 2-5 Before Turning On Digital Filter

Figure 2-6 After Turning On Digital Filter

Scope Function Menu

The **[Scope]** button includes the followingfunctions:

Acquire	Display	Math	Horizon	Ref
	_			

Figure 2-7 Scope Function Menu

Signal Acquisition

Press [Scope] and choose Acquire to choose a signal collection method (Fig. 2-8).

Sampling Peak			M Pos	5:0.00µs
Detect Average	· · · · · · · · · · · · · · · · · · ·	M 25.0ns		0Hz . 3,00mV
······································				ACQUIRE
Acquisition	Averages	Sinx/x	Mode	Sa Rate
Average	256	Sinx	RealTime	1.000GSa

Figure 2-8 Acquire Signals system function menu

Option	Setting	Introduction
	Sampling	Sampling displays most waveforms accurately
Acquisition	Peak Detect	Detect burr and reduce false wave phenomena
	Average	Reduce random and irrelevant noise
Averages	(4, 16, 32, 64,128,256)	Select a number of points to average together
Sinv/v	sinx	Use sin interpolation – gives smoother waveforms
SILIX/X	х	Use linear interpolation – more jagged waveforms
Modo	Equ time	Set the Sampling mode to Equ time
NIUGE	Real time	Set the Sampling mode to Real time
Sa Rate		Display system sampling rate

Table 2-5 Signal Acquisition Menu

Sampling: The scope constructs a waveform based on a sample of the probe input.

Peak Detect: The scope uses the maximum and minimum values of the signal in every interval to construct the waveform.

Average: The scope acquires several waveforms, averages them, and displays the final waveform. The more times averaged, the smoother of the waveform.

Equivalent Time Sampling: This mode is good for observing repetitive period waveforms. The sampling rate is up to 50GSa/s.

Real Time Sampling: The scope has the highest real-time sampling rate up to 1GSa/s.

Example: Interpolation with Sinx/x

- 1. Press [Scope] and choose Acquire to enter the acquisition menu.
- 2. Press [F4] to choose Real Time.
- 3. Press [F3] to choose Sinx/x.

Figure 2-9 Sinx Interpolation

Figure 2-10 X Interpolation

Display System

Press [Scope] and choose Display to enter the display menu. See Figure 2-6.

Туре	Persist	Intensity	Brightness	Next Page
Vectors	Off	6.035	40%	Page 1/2

Figure 2-11 Display Menu 1

Table 2-6 Display System Function Menu

Option	Setting	Introduction
	Voctors	Vectors fill the space between adjacent
Туре	VECIOIS	sample points in the display
	Dots	Dots: display sample points directly
	Off	
	1 sec	Sate the length of time each displayed
Persist	2 sec	sample point romains displayed
	5 sec	sample point remains displayed
	Infinite	
Intensity	<intensity></intensity>	Set waveform intensity
Brightness	<brightness></brightness>	Set grid brightness
Novt Page	Page 1/2	Enter the second page of DISPLAY
INEXL Page	raye 1/2	menu

Format	Screen	Grid	Menu Displav	Next Page
YT	Normal		Infinite	Page 2/2

Figure 2-12 Display Menu 2

Option	Setting	Introduction
	VT	YT format displays the voltage on the y-
	Ϋ́Ι	axis (vertical) and time on the x-axis
Format		XY format has CH1 input on the x-
	XY	axis and CH2 input on the y-axis
Scroop	Normal	Set to normal mode
Scieen	Inverted	Set to invert color display mode
	Ē	Display grids and axes on the screen
Grid		Turn off the grids
		Turn off the grids and axes
Menu	2sec, 5sec, 10sec,	Sat how long manus display oncoroon
Display	20sec, Infinite	Set now long menus display onscieen
Next Page	Page 2/2	Return to the first page of DISPLAY menu

T7 Display system function menu 2:

Example: XY Waveform Application

- 1. Input 2 sine signals to the channels, with the same frequency and range, and phase difference of 90 degrees, then press the **[Auto]** button.
- 2. Press [Scope] and choose Display to enter the displaysystem.
- 3. Press **[Next Page]** to enter the second page of DISPLAYmenu.
- 4. Press [F1] to choose XY mode.
- 5. Adjust the vertical range of CH 1 and CH 2 to obtain the best XY waveform.

Figure 2-13 XY Waveform

Math Waveform

Press [Scope] and choose Math to enter the math waveform function menu.

Operation		Invert	Next Page
+	CH1+CH2	Off	Page 1/2

Figure 2-14 MATH Menu

Table 2-8 Math Menu Function

Option	Setting	Instruction
	+	CH1+CH2
		CH1-CH2, CH2-CH1
Operation	*	CH1*CH2
	/	CH1/CH2, CH2/CH1
	FFT	Fast Fourier Transform
Invort	On	Invert the waveform
Inven	Off	Turn off the invert function
Next Page	Page1/2	Enter the second page of MATH menu

Figure 2-15 MATH Function Menu

Table 2-9 Addition operation

Option	Setting	Instruction
-~~.‡		Use arrow keys to move the waveform up
a ta :		Use arrow keys to adjust the scale of math
÷		waveform
Waveform	On	Turn on the math waveform
Math Switch	Off	Unique key turn off the math waveform
Next page	Page2/2	Return to the first menu off math waveform

Example: Waveform Math Application

- 1. Input two signals to the channels and press [Auto]
- 2. Press [Scope] and choose Math.
- 3. Press [F1] to choose "+" operation.
- 4. Press **[F5]** to enter the second page of waveform operation menu.
- 6. Press **[F4]** to turn off the math operation.

Figure 2-16 Result of Two Waveforms Add

About Fast Fourier Transform (FFT)

The FFT math operation translates a time domain signal into the frequency domain.

Operation FFT	Source CH1	Window Hanning	FFT Zoom 1X	Next Page Page 1/2
Figure 2-17 FFT Function Menu 1				
Scale	Display			Next Page
dBVrms	Split	ToZero	On	Page 2/2

Figure 2-18 FFT Function Menu 2

Table 2-10 FFT Window Function

Window	Characteristic	Best to Use with
	The best frequency resolution but the	Symmetric transients or bursts. Equal-
	worst magnitude resolution.	amplitude sine waves with fixed
Rectangular	Essentially the same as no window.	frequencies. Broadband random noise with
		a relatively slowly varying spectrum.
	Better frequency, poorer	Sine, periodic, and narrow-band random
Hanning	magnitude accuracy than	noise.
	rectangular.	
	Hamming has a slightly better	Transient or burst pulses. The ranges of the
Hamming	frequency resolution than Hanning.	signals have great difference from before to
		after.
	Best magnitude resolution but worst	Single frequency waveforms, to find higher
Blackman	frequency resolution.	order harmonics.

FFT Zoom: zoom in FFT waveform vertically by 1X, 2X, 5X and 10X.

Scale: choose dBVrms or Vrms as unit of measurement.

Display: Split shows both the unprocessed signal and its transform; **Full Screen** shows only the transformed signal.

Example: FFT

- 1. Input a signal to CH1 and press [Auto].
- 2. Press [Scope] and choose Math.
- 3. Press [F1] to choose FFT.
- 4. Press **[F5]** to enter the second page of the menu and adjust the setups.
- 5. Adjust the channel vertical scale and complete FFT waveform's vertical position and vertical scale settings.

Figure 2-19 FFT Waveform

Horizontal System

Press [Scope] and then choose Horizontal to enter the horizontal function menu.

Delayed	MemDepth
OFF	Normal

Figure 2-20 Horizontal System Menu

Delay scan: zoom in the waveform being chosen.

Memory depth: normal memory and long memory.

Example: Delay Scan

- 1. Input a waveform to CH1 or CH2.
- 2. Adjust time scale to display the best waveform.
- 3. Press [Scope] and then choose Horizontal to enter horizontal system.
- 4. Press [F1] to turn on delayscan.
- 5. Change time base and choose a window of waveform to zoom in and analyze.
- 6. Press [F1] to turn off delay scan.

Figure 2-21 Delay Scan Waveform

Example: Normal Memory and Long Memory under Real Time Sample Application

- 1. Input a sine signal with 100M bandwidth and 4V Vpp to CH1 or CH2, adjust time base to 50nS. The common storage sampling rate will be 1GSa/s while the long storage is 500MSa/s at this time.
- 2. Press [Run/Stop] while using normal storage or long storage.
- 3. Change time scale to let the whole waveform display on the screen.
- 4. Count memory depth: Sampling Points=Sampling Rate *Sampling Time

Figure 2-22 Normal Memory

Figure 2-23 Long Memory

Reference waveform

Press [Scope] and choose Ref to enter the reference waveform function menu.

Source			REFA
CH1	REFA	Save	On

Figure 2-24 Reference Waveform Menu

Table 2-11 REF Waveform Function Menu

Function	Setting	Instruction
Signal	CH1/CH2	Choose the waveform to be saved
Ref A/Ref B		Choose to save or recall the reference position of
		the waveform
50/0		Save the source waveform to the selected
Save		reference position
	On	Display the reference waveform on the screen.
Rei A/Rei D	Off	Clear the reference waveform from the screen

Example: Reference Waveform

- 1. Input a waveform to CH1 or CH2.
- 2. Adjust time base to display the best waveform.
- 3. Press [Scope] and choose Ref to enter horizontal system.
- 4. Choose the reference waveform need to save and press [F4] to save.
- 5. Press [F5] to show the reference waveform.
- 6. Press **[F5]** to clear the reference waveform.

Figure 2-25 Reference Waveform

Cursor and Measure System

Cursor measure

Press **[Cursor/Measure]** once to enter the cursor measure system. There are three modes of measure: manual, track, automatic.

Manual mode: two horizontal or vertical cursors appear and we use them to measure voltage or time parameters. The space between the cursors can be adjusted.

Mode	Туре	Source	Cur A	Cur B
Manual	Voltage	CH1	¢	+

Figure 2-26 Manual Cursor Measurement

Table 2-12 Manual Mode Function Menu

Option	Setting	Description		
Cursor Mode	Manual	Use manual cursor measure		
Туре	Voltage Time	Use cursors to measure voltage Use cursors to measure time		
Source	CH1, CH2 MATH , REFA,REFB	Choose the signal to be measured by cursors.		
Cur A		Use arrow keys to adjust position of cursor		
\$		Α.		
Cur B		Use arrow keys to adjust position of cursor		
\$		В.		

Track mode: In this mode, the screen displays two cross cursors. The cross cursor sets the position on the waveform automatically. You can manually adjust their position on the waveform with the arrow keys. The oscilloscope displays the values on the top of the right screen.

Figure 2-27 Cursor Trace Menu

Table 2-13 Track Mode Function Menu

Option	Setting	Descriptio
Cursor Mode	Track	In this mode, set track cursor measure.
	CH1, CH2	Set the input signal channel that the Cursor A will
CuisorA	NONE	measure.
	CH1, CH2	Set the input signal channel that the Cursor B will
Cursor B	NONE	measure.
Cur A		Lise arrow keys to adjust the position of ourser A
+		Use allow keys to adjust the position of cursol A.
Cur B		Lise arrow keys to adjust the position of cursor R
÷		

Example: Track Mode

- 1. Press [Cursor/Measure] once to enter cursor system.
- 2. Press [F1] to choose Track mode.
- 3. Adjust Cursors A and B to trace waveform with arrow keys.

Figure 2-28 Cursor Trace Menu

Automatic measure mode: This mode will take effect with automatic measurements. The oscilloscope will display cursors while measuring parameters automatically. These cursors demonstrate the physical meanings of these measurements.

Example: Automatic Measure with Cursors

- 1. Press [Cursor/Measure] once to enter cursor system.
- 2. Press [F1] to choose Automode.
- 3. Press [Cursor/Measure] again and choose parameter types to be measured.

Figure 2-29 Auto Measure

Measuring other Parameters

Press [Cursor/Measure] twice and any key from $F1 \sim F5$ to enter parameter measurement system.

Voltage	Time	Delay	All Mea	Return

Figure 2-30 Parameter Measure Function Menu

Table 2-14 Parameter Measure Function

Option	Description
Voltage	Press this button to enter the Voltage measure menu.
Time	Press this button to enter the Time measuremenu.
Delay	Press this button to enter the Delay measure menu.
All Mea	Press this button to enter the All Measurementmenu.
Return	Return to the home page of MEASURE menu.

Voltage Parameter Measurements

Source CH1	Type Vpp	1.20.0mU		Return
Cinuma 0.04 Demonster Measure Function Manu				

Figure 2-31 Parameter Measure Function Menu

 Table 2-15 Voltage Measure Function

Option	Setting	Description
Sourco		Select input signal source for
Source	CITT;CITZ	voltage measurement
	Vpp, Vmax, Vmin, Vamp, Vtop,	Press F2 or use the arrow keys to
Туре	Vbase, Vavg, Mean, Vrms, FOV,	select voltage measurement
	FPRE, ROV, RPRE ,	
	THE THE THE	Display the corresponding icon
lcon	tite the two and	and measured value of your
icon		selected voltage measurement
Poturn		Return to the MEASUREMENT
Return		menu home page

Time Parameter Measurements

Source	Туре	₹₹	
CH1	Period	1.00ms	Return

Figure 2-32 Time Measure Function Menu

Table 2-16 Time Measure Function

Option	Setting	Description
Source	CH1, CH2	Select input signal source for Time
Туре	Period, Freq, +Wid, -Wid, Rise Time, Fall Time, BWid, +Dut, -Dut	Press F2 or use the arrow keys to select time measurement
		Display the corresponding icon and measured value of the selected time measurement
Return		Return to the MEASURE menu home page

Delay Parameter Measurement

Source	Туре		
CH1	Phase	-1 40.4°	Return

Figure 2-33 Delay Measure Function Menu

Table 2-17 Delay Measure Function

Option	Setting	Description
Source	CH1, CH2	Select input signal source for delay
		measurement
	Phase, FRR, FRF, FFR, FFF,	Press the "Type" button or use
Туре		arrow keys to select delay
		measurement to make
		Display the corresponding icon
		and measure value of your
		selected Delay measurement
Doturn		Return to the home page of
Relum		MEASURE menu

All Parameters Measurements

Source	Voltage	Time	Delay	
CH1	On	On	On	Return

Figure 2-34 All Measure Function Menu

Table 2-18 All Measure Function Menu

Option	Setting	Description	
Source	CH1	Select input signal channel	
CH2			
Voltage	On/Off	Turn on/off all voltage parameter measurements	
Time	On/Off	Turn on/off all time parameter measurements	
Delay	On/Off	Turn on/off all delay parameter measurements	
Return		Return to the "All Measure main menu"	

Table 2-19 All Measure Function Menu

Measure Type	Introduction		
TIN Vmax	The positive peak voltage.		
<u>≆ ۲۰۲۰</u> Vmin	The negative peak voltage.		
1	The absolute difference between positive peak voltage		
*susus vpp	and negative peak voltage.		
ᡱᢩ᠆ᡗᠧ᠋ᢪᠧ᠊᠋᠊Vtop	The maximal voltage during the measure.		
_{≆∽} [:تر]:تر Vbase	The minimal voltage during the measure.		
≭[]ː[]ːː Vamp	The difference between the Vtop and the Vbase voltage.		
≇ ^{≏⊸∽} ∽ Vavg	The arithmetic mean over the first cycle of the waveform.		

Add Mean	The arithmetic mean over the entire waveform.			
±ోరో⊽ Crms	Virtual value: the true Root Mean Square voltage of the first cycle in the waveform.			
^√√√ Vrms	The true Root Mean Square voltage over the entire waveform.			
ROVShoot	Defined as (Vmax-Vhig)/Vamp after the waveform rises.			
FOVShoot	Defined as (Vmin-Vlow)/Vamp after the waveform falls.			
RPREshoot	Defined as (Vmin-Vlow)/Vamp before waveform rises.			
FPREshoot	Defined as (Vmax-Vhig)/Vamp before waveform falls.			
	The time between the first voltage level rising from 10% to 90%.			
Fall Time	The time between the first voltage level falling from 90% to 10%			
-፲፲፲፲- BWid	The duration of a burst over the entire waveform.			
+ ₩id	The time between the first rising edge and the next falling edge of 50% voltage level.			
¯╈ ∓ - Wid	The time between the first falling edge and the next rising edge of 50% voltage level.			
_f_t_ + Duty	The ratio between the first positive pulse width and the period.			
¯╈¯ - Duty	The ratio between the first negative pulse width and the period.			
N Phase	The phase difference between two waveforms.			
北市 FRR	The time between the first rising edge of source 1 and the first rising edge of source 2.			
≝⊒∵ ⊐au∵ri FRF	The time between the first rising edge of source 1 and the first falling edge of source 2.			
	The time between the first falling edge of source 1 and the first rising edge of source 2.			
_கூ கூரு FFF	The time between the first falling edge of source 1 and the first falling edge of source 2.			
±ா ஆர் LRR	The time between the first rising edge of source 1 and the last rising edge of source 2.			
北 元流 LRF	The time between the first rising edge of source 1 and the last falling edge of source 2.			
_ர LFR	The time between the first falling edge of source 1 and the last rising edge of source 2.			
_A A_LFF	The time between the first falling edge of source 1 and the last falling edge of source 2.			

Example: Parameter Measurement

- 1. Press [Cursor/Measure] twice and any key of F1~F5 to enter parameter measurement system.
- 2. Choose any key out of F1~F5 to choose measure type. For example: Voltage.
- 3. Press [F2] to choose measure parameter. For example: Vpp.
- 4. Press [F5] to return.

Figure 2-35 All Measure Function Menu

Example: Measuring All 32 Parameters

- 1. Input two sine signals respectively to CH1 and CH2, with the same frequency and amplitude but different phases.
- 2. Adjust time base and vertical scale to obtain the best waveform.
- 3. Press [Cursor/Measure] and choose All.
- 4. Turn on Voltage, Time, and Delay. All 32 parameters will be displayed.

Figure 2-36 32 Types of Parameter Measurement

Trigger System

There are 5 kinds of trigger function: edge, pulse, video, slope, alternative. Press **[Trigger]** to enter the trigger system.

Edge Trigger

Туре	Source	Slope	Mode	
Edge	CH1	Ŀ	Auto	Set Up

Figure 2-37 Edge Trigger Function Menu

Table 2-20 Edge Trigger Function Menu

Option	Setting	Description
Туре	Edge	Trigger on the rising or falling edge of the input signal.
Source	CH1, CH2	Set CH1 or CH2 as a trigger source.
Slope	_h _≁	Trigger on rising edge of the trigger signal. Trigger on falling edge of the trigger signal. Trigger on rising and falling edge of the trigger signal.
	Auto	Use this mode to let the acquisition free-run in the absence of a valid trigger. This mode allows an un-triggered, scanning waveform at 100 ms/div or slower time base settings.
Mode	Normal	Use this mode when you want to see the valid trigger waveforms only; the scope will not acquire waveform until satisfied trigger.
	Single	The setup detects a trigger and acquires waveform, then stop.
Setting		Enter the "Trigger Setup Menu".

Coupling	Holdoff	Holdoff	
DC	- 	Reset	Return

Figure 2-38 32 Trigger Setting Function Menu

Table 2-21	Trigger	Setting	Menu
------------	---------	---------	------

Option	Setting	Description	
	DC	Passes all components of the signal	
		Blocks DC components and attenuates	
	AC	signals below 170Hz	
Coupling	HE Poinct	Attenuates the high-frequency components	
		above 140kHz	
	LE Poinct	Blocks the DC component and attenuates	
		the low-frequency components below 7 kHz	
Hold off		Using the arrow keys to adjust hold off	
\$		time(sec), the hold off value is displayed	
Hold off		Reset hold off time to 100ns	
Reset			
Return		Return the first page of the menu	

Figure 2-39 Signal Rise Trigger Menu

Pulse Trigger

Туре	Source	When	SetWidth	Next Page
Pulse	CH1	→⊢	860µs	Page 1/2

Figure 2-40 Pulse Trigger Function Menu 1
Option	Setting	Description
Туре	Pulse	Make the pulse trigger match the (regular) trigger condition
Source	CH1, CH2	Select input signal source
Condition	 ☐ (Positive pulse width less than pulse width set) [○] (Positive pulse width larger than pulse width setting) [○] (Positive pulse width setting) [○] [(Negative pulse width less than pulse width setting) [○] (Negative pulse width larger than pulse width setting) [○] (Negative pulse width larger than pulse width setting) [○] (Negative pulse width larger than pulse width setting) 	Set the pulse trigger condition - It triggers as soon as the condition is met
Set Width	20.0ns~10.0s	Selecting this option can turn the arrow keys to set up the pulse width.
Next Page	Page 1/2	Enter the second page of the menu.

Table 2-22 Pulse Trigger Function Menu 1

Туре	Mode		Next Page
Pulse	Auto	Set Up	Page 2/2

Figure 2-41 Pulse Trigger Function Menu 2

Table 2-23 Pulse Trigger Function Menu 2

Option	Setting	Description
Туре	Pulse	Select the pulse to trigger the pulse match the trigger condition
Mode	Auto Normal Single	Select the type of triggering; Normal mode is best for most Pulse Width trigger applications
Setup		Enter the "Trigger setup menu"
Next Page	Page 2/2	Return to the first page of the menu

Example: Pulse Trigger Application

- 1. Input a pulse signal.
- 2. Press [Trigger] to enter trigger menu.
- 3. Press [F1] to choose pulse trigger.
- 4. Press [F3] to set pulse trigger conditions.
- 5. Press **[F4]** and use arrow keys to set pulse width.
- 6. Move trigger level line with the up and down arrow keys. The scope will trigger as soon as the signal meets the trigger conditions.

Notes:

We can't adjust the trigger level line under the **SetWidth** menu as we use the up and down arrow keys to set both the pulse width and trigger level line. If you want to adjust the trigger level, you must first exit the **SetWidth** menu.

Figure 2-42 Pulse Trigger

Video Trigger

Туре	Source	Polarity	Sync	Next Page
Video	CH1	Т	All Lines	Page 1/2

Figure 2-43 Video Trigger Menu 1

Table 2-24 Pulse Trigger Function Menu 2

Option	Setting	Description		
		Select the video type with AC coupling, and		
Туре	Video	you can trigger on NTSC, PAL and SECAM		
		video signal		
Source	CH1, CH2	Select the input source to be the trigger		
	ີ∐(Normal)	Normal triggers on the negative edge of the		
Polarity		sync pulse		
		Inverted triggers on the positive edge of the		
		sync pulse		

	All Lines	
Sync	Odd Field	Select appropriate video sync
	Even Field	
Next Page	Page 1/2	Enter the second page of "Video trigger menu"

Туре	Standard	Mode		Next Page
Video	NTSC	Auto	Set Up	Page 2/2

Figure 2-44 Video Trigger Menu 2

Table 2-25 Pulse Trigger Function Menu 2

Option	Setting	Description
		Select the video type with AC coupling,
Type	Video	and you can trigger on NTSC, PAL and
туре	VIGEO	SECAM video signal
Standard	NTSC,	Select the video standard for sync and line
Otandard	PAL/SECAM	number count
		Use this mode to let the acquisition free-run in
	Auto	the absence of a valid trigger; This mode
		allows an un-triggered, scanning waveform at
		100 ms/div or slower time base settings
Mode	Normal	Use this mode when you want to see only valid
Mode		triggered waveforms; when you use this mode,
		the oscilloscope does not display a waveform
		until after the first trigger
	Single	When you want the oscilloscope to acquire a
	Single	single waveform, press the "SINGLE "button
Set up		Enter the "Trigger setup menu"
Next Page	Page 2/2	Return the first page of "Video Trigger menu"

Example: Video Trigger

- 1. Input a video signal.
- 2. Press [Trigger] to enter trigger menu.
- 3. Press [F1] to choose Video.
- 4. Press [F5] to enter the second page of video trigger menu.
- 5. Press [F2] to choose PAL/SECAM or NTSC meeting with the input signal.
- 6. Press **[F5]** to return to the first page of video trigger menu.
- 7. Press **[F5]** to choose the type of **Sync.** If you choose Line Number, use the up and down arrow keys to set the line number.
- 8. Move trigger level line with the up and down arrow keys to set the trigger position.

Notes:

As with pulse triggers, we can't adjust the trigger level line under the **Line Number** menu as we use the up and down arrow keys to set both the pulse width and trigger level line. If you want to adjust the trigger lever, you must first exit the **Line Number** menu.

Figure 2-45 Video Trigger

Slope trigger

Туре	Source	When	Time	Next Page
Slope	CH1	→←	1.00ms	Page 1/2

Figure 2-46 Slope Trigger 1

Table 2-26	Slope	Trigger	Function	Menu '	1
------------	-------	---------	----------	--------	---

Option	Setting	Description		
Туре	Slope	Trigger on positive slope of negative slope,		
Type	Slope	depending on settings		
Source	CH1, CH2	Select trigger source		
Condition		Select trigger conditions		
Time	\$	Use the arrow keys to set slope time -		
	\langle Set time \rangle	Time setup range is 20ns-10s		
Next Page	Page 1/2	Enter the second page of the slope trigger		
i vonti age	i age 1/2	menu		

			M Pos C < 10	s:0.00µs 3Hz
CH1≕ 500mV		M 100µs	CH1 🖍	0.00V/ms TRIGGER
Туре	Vertical	Mode		Next Page
Slope	*	Auto	Set Up	Page 2/2

Figure 2-47 Slope Trigger 2

Table 2-27 Slope Trigger Function Menu 2

Option	Setting	Description		
Туре	Slope	Trigger on positive slope of negative slope		
Vertical		Select the trigger level that can be adjusted with the "LEVEL" button. You can adjust "LEVEL A" or "LEVEL B", or adjust them at the same time.		
	Auto	Use this mode to let the acquisition free-run in the absence of a valid trigger; This mode allows an un-triggered, scanning waveform at 100 ms/div or slower time base settings		
Mode	Normal	Use this mode when you want to see only valid triggered waveforms; when you use this mode, the oscilloscope does not display a waveform until after the first trigger		
	Single	When you want the oscilloscope to acquire a single waveform, press the "SINGLE " button		
Set up		Enter the "Trigger setup menu"		
Next Page	Page 2/2	Return to the first page of slope trigger		

Alternative trigger

The trigger signal comes from two vertical channels when you use alternative trigger. In this mode, you can observe two unrelated signals at the same time. You can select different trigger types for two vertical signals, including edge, pulse, video and slope triggers. Trigger information for the two channel signals display on the bottom right of the screen.

Туре	Source	Mode	Slope	
Alternative	CH1	Edge	<u> </u>	Set Up

Figure 2-48 Alternative Trigger Menu

Option	Setting	Description			
		The trigger signal comes from two vertical channels			
Туре	Alternative	when you use alternative trigger			
Source	СНХ	Set trigger type information for CHX signal Set			
Source	CHY	trigger type information for CHY signal			
	Edge				
Modo	Pulse	Sat trigger type of the vertical channel signal			
Mode	Video	Set trigger type of the vertical channel signal			
	Slope				
	<u>-</u>	Triggering on rising edge			
Slope	T_	Triggering on falling edge			
	t↓	Triggering on rising edge and falling edge			
Set up		Enter the "Trigger setup menu"			

Save and Recall System

The AEGIS-OSC-9100 can save 2 groups of reference waveforms, 20 groups of setups and 10 groups of waveforms in its internal memory. There is a USB Host plug on the right side of the scope and you can save setup data, waveform data, waveform interface images, and .CSV files to a USB flash drive. The filename suffix of setup data is .SET while waveform data is .DAV. Waveform data can be re-displayed on the current or another AEGIS-OSC-9100. Figure data and .CSV file can't be recalled to the scope itself, but it can be opened on the computer through the appropriate software. .CSV files can be opened by EXCEL or other spreadsheet software.

Saving Setups

Saving Setups to Device

All setups are stored in nonvolatile memory. To recall setups, first press [Save/Recall].

Туре	Save To	Setup		
Setups	Device	No.1	Save	Recall

Figure 2-49 Saving Setups to Device Menu

Option	Setting	Description	
Туре	Setups	Menu for Save/Recall settings	
Save to	Device	Save setups to the scope's internal memory	
Setup	No.1 to No.20	Choose the position number to save/recall setups	
Save		Save the current setup	
Recall		Recall a saved setup	

Table 2-29 Saving Setups to Device Function Menu

Saving Setups to USB Flash Drive

Туре	SaveTo		
Setups	File	Save	Recall

Figure 2-50 Saving Setups to USB Flash Drive Menu

Table 2-30 Saving Setups to USB Flash Drive Function Menu

Option	Setting	Description
Туре	Setup	Used to save/recall a scope setup
Save to	File	Save the setup data of the product to USB flash drive
Save		Enter the waveform save/recall interface

Saving waveform

Saving a Waveform to Internal Memory

Туре	SaveTo	Waveform		
Waveforms	Device	No.1	Save	Recall

Figure 2-51 Saving Waveform to Device Menu

Table 2-31 Saving a Waveform to Internal Memory Menu

Option	Setup	Introduction		
Туре	Waveforms	Menu for the Storage/Recall of waveforms		
Save To	Device	Save waveforms to the product's internal memory		
waveform	No.1 to No.10	Choose the position number to save/recall waveforms		
Save		Save the current waveform		
Recall		Recall a stored waveform		

Saving a Waveform to USB Flash Drive

Туре	SaveTo		
Waveforms	File	Save	Recall

Figure 2-52 Saving Waveform to USB Flash Drive Menu

Option	Setup	Description
Туре	Waveforms	Menu for the Storage/Recall of waveforms
Save to	File	Save waveforms to USB flash drive
Save		Execute the Save action

Saving Picture

Waveform interface image can be saved to USB flash drive, but they can't be recalled. You can view them with the appropriate software on a computer.

Type Print	Key
Picture Sau	ve
Pict	Jure

Figure 2-53 Saving Picture Menu

Table 2-33 Saving Picture Function Menu

Option	Setting	Description
Туре	Picture	Menu for the Storage/Recall waveform interface
Print Key	Print Picture Save Picture	Choose Print Picture option and press Save/Recall for 4 seconds to print the picture while the product connects to the printer Choose Save Picture option and press Save/Recall for 4 seconds to save the picture while you insert an USB flash driver to the product
Save		Go to the Save/Recall interface

Saving CSV

Туре	Data Depth	Para Save	
CSV	Displayed	Off	Save

Figure 2-54 Saving CSV Menu

Option	Setting	Description
Туре	CSV	Menu for Storing CSV on USB flash drive
Data Danth	Displayed	Set to store displayed waveform data to CSV file
Data Depth	Maximum	Set to store maximum waveform data to CSV file
Para Save	On/Off	Set whether store parameters to CSV file or not
Save		Go to the Save/Recall interface

Recall Factory Setups

By pressing **Recall** you can recall factory setups.

Table 2-35 Factory Setups Function Menu

Option	Setting	Description	
Туре	Factory	To view the Factory setup	
	Load	Recall the Factory setup	

Example: Save/Recall Waveform to USB Flash Drive

- 1. Press [Save/Recall] and then [F1] (Type) to choose Waveforms.
- 2. Insert USB flash drive to USB port (you will get the message: USB flash driver connects successfully!).
- 3. Press [F2] (Save to) to choose File.
- 4. Press [F4] (Save) to enter save/recall interface.
- 5. Press [F1] (Modify) to choose File.
- 6. Press [F2] (New File) and input the name of the file, following the prompts. Then press Confirm.

Name : A B C D N O P G O 1 2 3 BackSpa	SHS00001 EFGHI RSTUV 45678 ce DeleteC	J K L M WX Y Z 9 L 1 Character I Cl select charact	eanName ers	
InputChar	—	→	Confirm	Cancel

Figure 2-55 Input the Name of the File

7. A notification will appear when the file is successfully saved.

Figure 2-56 File Saves Successfully

Recalling a file:

Choose the file to be recalled and press **Recall** at the memory interface, which you complete the recalling operation.

Notes:

Saved images with a .BMP file suffix can't be recalled on the scope itself, but you can open it in computer with the appropriate software.

Utility System

Press [User] to enter the utility system menu.

Sustem	Sound	Counter	Language	Next Page
Status	_ <€	On	English	Page 1/4

Figure 2-57 Utility System Menu 1

Table 2-36 Utility System Function Menu 1

Option	Setting	Description
System		Displays the main information of the
Status		product.
Sound	¢.	Sound on
oodna	\approx	Sound off
Counter	Op/Off	Turn on/off the frequency
Counter		counter
	Simplified Chinese, English,	
	Traditional Chinese, Arabic,	
Language	French, German, Russian,	Select the interface language.
	Spanish, Portuguese,	
	Japanese, Korean, Italian	
Next	Page 1/4	Enter the next page of the menu.
Page	Fage 1/4	

Table 2-37 Utility System Function Menu 2

Option	Setting	Description	
Do self Cal		Do a self calibration to calibrate the channels.	
Do Solf Toot	Screen Test	Run the screen detect program	
Do Seil Test	Keyboard Test	Run the keyboard detect program	
Print Setup		Enter the print setup menu to set print options	
	Printer	Under development	
	Computer	Under development	
Next Page	Page 2/4	Enter the third page of the menu	

Do	Do	Deint	USB Device	Next Page
SelfCal	SelfTest	Setup	Computer	Page 2/4

Figure 2-58 Utility System Menu 2

Do	Do	Print	USB Device	Next Page
Self Cal	Self Test	Setup	Printer	Page 2/4

Figure 2-59 Utility System Print Setup

		Next Page
Update Firmware	Record	Page 3/4

Figure 2-60 Utility System Menu 3

Table 2-38 Utility System Function Menu 3

Option	Setting	Descriptio
Update		You can update the product by using USB flash
Firmware		driver (takes about two minutes)
Record		Press this button to enter the waveform recordmenu
Next Page	Page 3/4	Enter the fourth page of the menu

Screen saver		Next Page
15min	Date/Time	Page 4/4

Figure 2-61 Utility System Menu 4

Table 2-39 Utility System Function Menu 4

Option	Setting	Descr
	1min 2min	
	5min 10min	
Screen saver	15min 30min	Set the idle time (without any buttons
	1hour	being pressed) after which the
	2hour	
Date/Time		Set the date and time in the scope
Next Page	Page4/4	Return to the first page of the menu

Self Calibration

Self Calibration is required periodically to prevent errors in measurement. If the operating temperature changes by or more than 9 degrees F (5 C) or the instrument runs for more than thirty minutes, you should run a self calibration. Before self calibration, you should disconnect all probes and leads. Then press the **[User]** button and choose **Do self cal** to show the self calibration menu, follow the prompts to self-calibrate the scope.

Figure 2-62 Self Calibration

Print Setting

The scope can be used with PictBridge compatible printers. You can connect the side USB Device of the product to the USB Device of the PictBridge compatible printer through a USB cable. After setting the print settings, press **[Save/Recall]** button for 4 seconds to complete the print operation.

InkSaver	Layout	PaperSize	Print Key	Next Page
On	Portrait	Default	Print Picture	Page 1/2

Figure 2-63 Print Setting Menu 1

Option	Setting	Description
lok Sovor	On	Print the screen image on a white
IIIK Saver	Off	background when you select On .
Layout	Portrait/Landscape	The output direction of the printer.
Paper Size	Set the type of the paper.	Displays settings available on your PictBridge compatible printer.

Drint Koy	Print Picture	Choose Print Picture option and press Save/Recall for 4 seconds to print the picture while the scope connects to the printer.
Plint Key	Save Picture	Choose Save Picture option and press Save/Recall for 4 seconds to save the picture while you insert an USB flash driver to the product.
Next Page	Page 1/2	Enter the second page of the menu.

ImageSize	PaperType	PrintQuality	ID Print	Next Page
Default	Default	Default	Default	Page 2/2

Figure 2-64 Print Setting Menu 2

Table 2-41 Print Setting Function Menu 2

Option	Setting	Description
	Sat the type of the paper	Set the paper size available to the
	Set the type of the paper.	PictBridge compatible printer.
	Default, Plain,	
Рарег туре	Photo,FastPhoto	
Print Quality	Default, Normal, Draft, Fine	
ID Print	Default, On, Off	
Next Deve		Return to the first page of the
Next Fage	Page 2/2	menu.

Waveform Record

The AEGIS-OSC-9100 can record a waveform with a designated time interval between frames. Note: The recorder requires a time interval of 100ms or more, which is too long a scale to detect shaft voltages accurately.

When recording CH1 or CH2 waveform, users can set the interval between frames. The recorder can record 2500 frames of a waveform.

Mode	Source	Interval	End Frame	Operate
Record	CH1	100ms		

Figure 2-65 Waveform Record Menu

Option	Setting	Description	
	Record	Use recorder	
Mode	Replay	Replay recordings	
	Off	Turn off waveform record	
Source	CH1, CH2	Choose signal source	
Interval	\$	Set frame interval	
End Frame	\$	Set how many frames to record	
Operate	(record)	Start to record	
	■ (stop)	Stop recording	

Table 2-42 Waveform Record Menu

Mode	Operate	Play Mode	Interval	Next Page
Play Back		Ę.	10.0ms	Page 1/2

Figure 2-66 Waveform Play Back Menu 1

Table 2-43 Waveform Play Back Function Menu 1

Option	Setting	Description
Mode	Play Back	Set up playback
Oporato	(Run)	Press to start playback
Operate	■ (Stop)	Press to stop playing.
Play Mode	ţ	Play back on loop
Flay Wode	▶→■	Play back once
Interval	\$	Set interval between frames
Next Page	Page 1/2	Enter the second page of the menu

Start Frame	CurrLframe	End Frame		Next Page
=	-		Return	Page 2/2
				-

Figure 2-67 Waveform Play Back Menu 2

Table 2-44 Waveform Play Back Function Menu 2

Option	Setting	Description	
Start Frame	\$	Set start frame	
Curr_Frame	♦	Select current frame to be played	
End Frame	\$	Set end frame	
Poturn		Press to return to the waveform recorder main	
Retuin		menu	
Novt Page	Page 2/2	Return to the first page of Play Back function	
INEXL Page		menu	

Example: Recording a Waveform

- 1. Input a waveform to be recorded.
- 2. Press [User] to enter utility system.
- 3. Press [F5] to enter the third page of the menu and enter waveform recording menu.
- 4. Press [F1] to choose Record mode.
- 5. Use up and down arrow keys to set [Interval] and [End Frame].
- 6. Press **[F5]** to begin recording.

Example: Playing Back a Waveform

- 1. Press [F1] to choose Replay mode.
- 2. Press [F5] to enter the second page of the menu.
- 3. Set the Start Frame, Curr_frame, End Frame to replay, and return to the first page of the menu.
- 4. Set [Replay] Mode, Interval and press [F2] to replay the waveform.
- 5. Press [F1] to choose Off mode to turn off Waveform Record/Replay.

Figure 2-68 Waveform Record

Figure 2-69 Waveform Play Back

Chapter 3 Using the Multimeter

About this Chapter

This chapter provides a step-by-step introduction to the multimeter functions of the AEGIS-OSC-9100. It will give basic examples to show how to use the menus and perform basic operations.

The digital multimeter can measure the following quantities: DC voltage, AC voltage, resistance, diode, continuity, capacitance, DC current, and AC current.

Notes:

- 1. You must use the multimeter with the correct connections as shown onscreen.
- 2. As with the oscilloscope, the [Run/Stop] key freezes the screen.

- 1. The range/scale of the multimeter
- 2. Graphical measurement
- 3. Measured value
- 4. Input ports
- 5. Relative value
- 6. Correct inport connection Be sure the leads are plugged in here!
- 7. Test type
- 8. Operation type

Making DC and AC Voltage Measurement

Option	Setting	Description				
		Save the current input value as a reference and record again. Real				
Relative Value	On	value equals relative value plus measurement value				
	Off	Real value equals measurement value				
	Auto	Choose the best measurement scale				
Mode	Auto	automatically				
	Manual	Choose measurement scale manually				
		Choose the best measurement scale to the				
	Auto	automatically according measured				
Scale		value				
	Manual	Choose measurement scale manually – A warning will display over				
	Mariuai	the scale				
Trend Plot	On	Plot the measurements according to time				

Table 3-1 DC and AC Function Menu

Figure 3-2 DC Voltage Measurement

Figure 3-3 AC Voltage Measurement

- 1. Press **[Meter]** to enter multimeter mode, then **[F1]** to choose **DCV** or **ACV** measurement.
- 2. Insert the red probe to the **V.Ω.C** banana jack input and the black probe to the **COM**. Connect the other end of probes to the power or load to be measured.
- 3. Turn the **Relative** option on or off as desired.
- 4. Choose Manual or Auto as desired.
- 5. Read voltage value.

ANUAL 99.6Ω 100 200 300 400 500 600Ω Meter Relative Res. Off Manual Trend Plot

Making Resistance Measurements

Figure 3-4 Resistance Measurement

- 1. Press [Meter] to enter multimeter mode, then [F1] to choose Res. measurement.
- 2. Insert the red probe to the **V.Ω.C** banana jack input and the black probe to the **COM**. Connect the other end of the probes to the power or load to be measured.
- 3. Turn the **Relative** option on or off as desired.
- 4. Choose Manual or Auto as desired.
- 5. Read resistance value.

Note:

When measuring resistance, ensure that the circuit is powered off and any capacitance is discharged to avoid damage to the multimeter.

Making Diode Measurements

Figure 3-5 Diode Measurement

- 1. Press [Meter] to enter multimeter mode, then [F1] to choose Diode measurement.
- Insert the red probe to the V.Ω.C banana jack input and the black probe to the COM. Connect the other end of probes to the diode to be measured.
- 3. Read the value.

Making Continuity Measurements

Figure 3-6 Continuity Measurement

- 1. Press [Meter] to enter multimeter mode, then [F1] to choose Continuity measurement.
- Insert the red probe to the V.Ω.C banana jack input and the black probe to the COM. Connect the other end of probes to the object to be measured.
- 3. When the measured object is under 50 Ω , the multimeter will beep and display the value of the resistance.
- 4. When the measured object is above 50 Ω , the multimeter will not beep

Making Capacitance Measurements

Figure 3-7 Capacitance Measurement

- 1. Press [Meter] to enter multimeter mode, then [F1] to choose Cap. measurement.
- Insert the red probe to the V.Ω.C banana jack input and the black probe to the COM. Connect the other end of the probes to the measured object.
- 3. Turn the **Relative** option on or off as desired.
- 4. Read measurement value.

Making DC and AC Current Measurements

Figure 3-8 DC Current "mA" Measurement

Figure 3-9 DC Current "A" Measurement

Figure 3-10 AC Current "mA" Measurement

Figure 3-11 AC Current "A" Measurement

- 1. Press [Meter] to enter multimeter mode, then [F1] to choose DCI/ACI measurement.
- 2. Insert the black probe to the **COM** multimeter input. For currents < 600 mA, plug the red probe into the mA input (Figures 3-8, 3-10). For currents over 600 mA but under 10A, plug the probe into the A input (Figures 3-9, 3-11). The multimeter cannot handle currents over 10 A. These multimeter jacks are fused, and an overcurrent will blow the fuse.
- 3. Connect the other end of the probes in series with the circuit to be measured.
- 4. Turn on /off the **relative** as desired.
- 5. Choose Manual or Auto as desired.
- 6. Read current value.

Chapter 4 Using the Recorder Functions

About this Chapter

This chapter provides a step-by-step introduction to the recorder functions of the AEGIS-OSC-9100, giving basic examples to show how to use the menus and perform basic operations.

The recorder mainly includes the following functions:

Trend Plot: This saves the measurements in scope memory and then plots a graph of Scope or Meter measurements as a function of time.

Waveform Recorder: Record real time waveform without gaps or spaces. The scope records all captured waveform data and can replay it. The maximum recording length of the waveform recorder is 7M data points.

Oscilloscope Trend Plot

Figure 4-1 Scope trend plot user interface

- 1. Current recorded time
- 2. Percentage of recorded data vs. the total amount of memory
- 3. Value of the latest recorded data point A
- 4. Value of the latest recorded data point B
- 5. Real time
- 6. Sampling time of the cursor point
- 7. Parameter measurement of the cursor point
- 8. Vertical scale (lower limit)
- 9. Vertical scale (upper limit)

Trend Plot	ParamA	Param B		Next Page
Restart	CH1 Vpp	CH1 Vmax	Run	Page 1/2

Figure 4-2 Scope	Trend plot	Function	Menu '	1
------------------	-------------------	----------	--------	---

Table 4-1 Scope Trend plot Function Menu 1

Option	Setting	Description
Trend Plot	Restart	Discard the current data set and start a new one
Parameter A/B	Choose the parameter to be measured.	Voltage, time, or delay measurements
Run/Stop		Pause or continue recording data
Next Page	Page 1/2	Enter the second page of the menu

	Manual			Next Page
Normal	Off	Waveforms	Return	Page 2/2

Figure 4-3 Scope Trend plot Function Menu 2

Table 4-2 Scope Trend plot Function Menu 2

Option	Setting	Description	
Display Mode	Normal	Display the data up to the minute	
Display Mode	View all	Display all data, compressed to fit	
	Off	Record data automatically	
Manual	On	Record data manually. Pressing [Record]	
		records a data point	
Waveforms		Save data from memory to USB storage device	
Return		Return to the oscilloscope interface	
Next Page	Page 2/2	Return to the first page of the menu	

First choose a measurement in scope or meter mode. You can choose the recorder functions from the waveform recorder main menu. For more details, see the following examples:

Meter	r	Scope	Scope
rend Plot		Recorder	Trend Plot
t	Meter	Meter	Scope
	Trend Plo	Trend Plo	Recorder Trend Plo

Figure 4-4 Recorder Function Main Menu

Scope Trend Plot

Open trend plot function

- 1. Input a signal to CH1 or CH2.
- 2. Press [Recorder] to enter the recorder main menu.
- 3. Press [F1] and choose ScopePlot.
- 4. Choose **Parameter A/B** to measure and start recording the trend plot.
- 5. Press [F5] to pause or resume recording data.

Figure 4-5 Trend Plot record Curve

Display recorded data

- 6. Press **[F5]** to enter the second page of trend plot menu.
- Press [F1] to choose data display mode.
 Normal: the screen displays the data up to the minute.
 View All: the screen displays all data in the memory.
- 8. Zoom function: under full screen mode, press time base to zoom in or out.
- 9. Data analysis: move cursor, analyzing data over time.

Figure 4-6 Analyzing Trend Plot

- 10. Save waveform: save the recorded waveform to a USB storage device to make more detailed analysis.
- 11. Press Return to exit trend plot.

Waveform Recorder

Press **[Recorder]** to enter the main recorder menu under scan time base, then press **[F2]** to choose Scope recorder.

Record	Replay	Option	Return

Figure 4-7 Waveform Recorder Menu

Option	Description	
Record	Record waveform without gap	
Replay	Replay the recorded waveform	
Option	Set the parameters of the waveform recorder	
Return	Exit waveform recorder function	

Table 4-3 Waveform Recorder Function Menu

Figure 4-8 Waveform Recorder Saving Mode Menu

Table 4-4 Waveform Recorder Saving Mode Function Menu

Option	Description
Start	Begin to record waveform (record waveform for under 100ms and
Start	above scan time base)
Replay	Replay the recorded waveform
Сору	Copy the waveform saved in the memory to a USB flash disk.
Save mode	Choose a place to save, including USB flash disk. USB flash driver saves only under 2.5s/div and above time base
Return	Exit the submenu and return to the waveform recorder main menu

Tretoin	Continue	Restart	Previous	Next	Return
---------	----------	---------	----------	------	--------

Figure 4-9 Waveform Recorder Replaying Mode Menu

Option	Description	
Stop/Continue	Pause or resume playing waveform automatically - you can change the time base to observe the waveform in the memory	
Restart	Replay the waveform	
Previous	Back up the waveform and then resume play	
Next	Speed up the waveform replaying	
Return	Exit the replaying menu	

Table 4-5 Waveform Recorder Replaying Mode Function Menu

Viewer	Record	Replay	
Split	continuous	By point	Return

Figure 4-10 Waveform Recorder Setting Menu

Table 4-6 Waveform Recorder Setting Menu

Option	Setting	Description
Viewer mode	Full screen	Record and replay channel waveform with full screen
	Split	Record and replay channel waveform with divided screen. The upper half of the screen displays CH1 and the lower half displays CH2
Record mode	Continuous	Record circularly: when the waveform recorder is full, the later data will overwrite the earlier
	Single	Stop recording when the waveform recorder memory is full
	By Point	When replaying, the screen waveform updates every dot from left to right
Replay mode	By Frame	When replaying, the screen waveform updates the whole screen according to the time of every frame's sampling
Return		Exit the recorder setup interface

Waveform Recorder Example

Startup the waveform recorder function:

- 1. Use 100ms or larger time base.
- 2. Press [Recorder] to open the main menu.
- 3. Press [F2] to choose scope recorder.
- 4. Press **[F3]** to set the waveform recorder.
- 5. Press **[F5]** to return to the waveform recorder main menu.
- 6. Press **[F1]** to enter record interface.
- 7. Press **[F4]** to set storage mode. Interior and USB flash disk storage mode.

8. Press **[F1]** to start recording data.

The waveform will not move right and the recorded data will be saved to memory. The recorded time will be different according to the time base. You can pause or stop at any time.

Figure 4-11 Waveform Recorder Interface

Waveform Replay

- Press [F2] to replay waveform.
 You can replay the recorded waveform any number of times, and you can advance or rewind at any time.
- 10. Press [F5] to exit the waveform recorder.

Multimeter Trend Plot

Figure 4-12 Multimeter Trend Plot User Interface

- 1. Current recorded time
- 2. Percentage of the whole memory used by the current data
- 3. Current value of the parameter of interest
- 4. DC/AC
- 5. Manual/Auto
- 6. Real current time
- 7. Sample time at the cursor point
- 8. Measured parameter value at the cursor point
- 9. Vertical scale (minimum)
- 10. Vertical scale (maximum)

Trend Plot	Sa Rate			Next Page
Restart	10Sa/s	Normal	Run	Page 1/2

Figure 4-13 Multimeter Trend Plot Menu 1

Table 4-6 Multimeter Trend Plot Function Menu 1

function	setting	Description	
Restart		Discard the current data set and start a new one	
Sa Rate	10Sa0.005Sa	Set sampling rate	
Display	normal	Display the recorded data up to the minute	
mode	All view	Display all dots	
Record	Run	Record data automatically	

Mode	Stop	Stop recording data
Next Page	Page1/2	Enter the second page of the menu.

	Manual		Next Page
Waveforms	Off	Return	Page 2/2

Figure 4-14 Multimeter Trend Plot Menu 2

Table 4-7 Multimeter Trend Plot Function Menu 2

Function	Setting	Description
Waveform storage		Save data from memory onto a USB storage drive
	Off	Record data automatically
Record manually	On	Record data manually - pressing Record saves a
		measurement
Return		Return to the multimeter function state
Next Page	Page2/2	Return to the first page

Multimeter Trend Plot

Start plot function

- 1. Input a measured signal correctly. See Chapter 3 Using the Multimeter.
- 2. Press **[F5]**to enter Trend Plot at the multimeter main menu.

The multimeter will record the measured value of the input port continuously and plot measurements over time.

Figure 4-15 Multimeter Trend Plot Recording Curve

- 3. Press [F4]to pause or resume recording data.
- 4. On the second page of the menu you can choose manual or auto mode to record data.

Replay Recorded Data

- Press [F3] to choose data displaymode.
 Normal mode: the screen displays the data up to the minute, before they are stored in memory.
 Full view mode: the screen display all recorded data in memory.
- 6. Zoom function: under full screen mode, press time base to zoom in or zoom out.
- 7. Data analysis: move cursor, analyzing data over time.

Figure 4-16 Analysis Trend Plot Data

- 8. Save waveform: save the recorded waveform to a USB storage device to make more detailed analysis.
- 9. Press **Return** to exit Trend Plot.

Chapter 5 Prompts and Troubleshooting

About this Chapter

This chapter gives a detailed instruction of every system prompt in the scope, as well as some basic troubleshooting.

System Prompt Messages

- Trig level at limit! : Triggering has limitations- you can only set a trigger so high (or low), and this prompt means you've reached such a limit.
- Horizon position at limit! : The horizontal position is at a limit.
- Volts/Div at limit! : The voltage scale can only go down to 2 mV/div or up to 100V/div.
- Volts position at limit! : The current view is at the maximum or minimum voltage viewable.
- Sec/Div at limit! : The time scale is at its minimum (2.5 ns/div) or maximum (50 s/div).
- Holdoff time at limit! : Allowable holdoff times are 100 ns to 1.5 s.
- **Function isn't useable!** : Under some particular modes, some functions may not be accessible.
- No signal! : When using Auto, the signal may be too faint or non-periodic for the Auto function to choose display parameters for it.
- Adjust at limit! : You can only adjust pulse width down to a minimum of 20.0 ns or maximum of 10.0 s.
- Location Empty! : If you have no stored waveforms or setups at a given location, the scope will display this alert if you try to **Recall** from that location.
- **USB Flash Drive Plug In!** : This appears when you invert a USB flash drive to the USB Host port.
- USB Flash Drive Pull Out! : This appears when you remove a USB flash drive.
- Store Data Success! : This lets you know that a save of setup data, waveform data, or Figure data to the scope's memory or a USB drive succeeded.

- Read Data Success! : Setup or waveform data from the internal memory or a USB drive was successfully read.
- Please set USB Device to printer! : This alert means that the "Print Key" option is set to "Print Figure" but the "USB Device" option is set to "Computer." Set the "USB Device" option to "Printer."
- USB Flash Drive isn't connected! : This error occurs when the "Save To" option is set to "File" or the "Print Key" option is set to "Save Figure" in "Save/Recall" menu, and the "Save" option button or the "s/div" button is pressed before a USB drive is plugged in.
- **Record Wave Success!** : This message will appears when you finish recording waveforms.

Troubleshooting

1. After the scope is powered on, if the screen remains dark:

- 1) Check the power cable connection.
- 2) Ensure the power switch is turned on.
- 3) After the above checks, restart the scope.
- 4) If the scope still does not operate, contact Electro Static Technology.

2. If there is no signal wave on the screen while collecting signal:

- 1) Ensure that the probe is in contact with the signal cable.
- 2) Ensure that the signal cable is connected to the BNC connector.
- 3) Ensure that the probe is in contact with the object to be tested.
- 4) Check whether the tested object is producing a signal (is it on?).
- 5) Try to measure the signal again.

3. If the value of the tested voltage is 10 times higher/lower than what it should be:

Check whether the probe and the oscilloscope are both set to the same attenuation (1X, 10X, ...).

4. If a waveform is displayed, but it is not steady:

- 1) Ensure that the trigger interface is set to monitor the correct channel for triggering signals.
- 2) Check the trigger mode: normal signal should use the "edge" trigger mode. Video signals should use the "Video" Trigger mode. The signal should display steadily if the right trigger mode is used.
- **3)** Change the "coupling" setting to "HF Reject" or "LF Reject", so that high or low frequency noise disturbing the trigger will be filtered out.

5. If you press the "RUN/STOP" button, but there's no wave displayed:

Check whether the trigger mode, on the trigger interface, is in "normal" or "single", and check the whether the trigger level is above the wave range. If yes, put the trigger level to the middle position or set the trigger mode to the "Auto" position. Alternately, you could choose the "Auto" button to set up automatically.
6. If the signal is displayed as a ladder-like waveform:

- 1) This phenomenon may be normal. The time base may be too slow. Adjusting s/div to increase the horizontal resolution may improve the display.
- 2) The display Type may be set to "Vectors". Using "Dots" mode may improve the display.

7. If the multimeter measurements aren't correct:

- 1) Check that if the range of the scope matches with the expected range of signal from the measured object.
- 2) Check whether the multimeter is beyond its calibration date. if the measurements and the real values are beyond the relevant precision, please contact with the calibration site warranted by our company to calibrate the product .
- **3)** If you can't use the product normally all the same, please contact with servicing center, we will provide service for you.
- 8. For other problems: contact Electro Static Technology.

Persons not authorized by Electro Static Technology should not disassemble the AEGIS-OSC-9100 for inspection. Such disassembly will nullify the warranty.

Appendix A: Specifications

The following specifications apply to 10X probe attenuation when the following conditions are met:

- The oscilloscope must have been operating continuously for thirty minutes within the specified operating temperature
- The Do Self Cal operation, accessible through the [User] menu, must be performed if the operating temperature changes by or more than 5°C
- The oscilloscope must be within the factory calibration interval
- The oscilloscope should be calibrated once every year

All specifications are guaranteed except those noted "typical".

Oscilloscope Specifications

Input System			
Input Coupling	AC, DC, GND	C, DC, GND	
Input Impedance	1MΩ±2% 18pf±3pf		
Probe Attenuation	1X, 10X		
Meter Attenuator Factors	1X, 5X, 10X, 50X, 10	00X, 500X, 1000X	
RNC Maximal Input Voltages	Overvoltage Classes	Maximal Voltages	
(refer to BNC crust)	CAT II	300Vrms	
	CATIII	150Vrms	
Probe	Overvoltage Classes	Maximal Voltages	
Standard Probe 10X	CAT II	400Vrms	
Optional Probe 10X	CAT III	600Vrms	
	Overvoltage Classes	Maximal Voltages	
Multimeter Floating Voltages	CAT II	600Vrms	
	CAT III	300Vrms	
Channel Common Mode	> 100·1 50MH-		
Rejection			
Isolation Degree between	>35dB		
Channels			

Acquisition System					
Sample T	ypes	Real time, Equivalent time			
	Channel		Sampling Pato	Common	Deep Storage
	Mode	Э	Sampling Rate	Storage	
Memory	Single	е	1000/0	40kpts	Don't
Depth Chann Chann Chann Chann Doubl Chann	Chann	el	1008/3		support
	Single	е	500MSa/s or	20kpts	2Mote
	Chann	el	below	206013	2101013
	Doubl	е	500MSa/s or	20kpts	1Mote
	Channels		below	201013	TMPIS
Sample N	lode Sample, Peak Measure, Average				
Averages		4, 16, 32, 64, 128, 256			

Vertical System		
Vertical Sensitivity	2mV/div - 100V/div(1-2-5 order)	
	2mV ~200mV : ±1.6V	
Channel Voltage Offset Range	206mV \sim 10V : ±40V	
	10.2V \sim 100V : ±400V	
Vertical Resolution	8 bit	
Channels	2	
Bandwidth	100 MHz	
Lower Frequency Limit (AC -3dB)	≤10Hz	
DC Gain Accuracy	5mV/div-100V/div:≤±3% 2mV/div:≤±4%	
DC Measurement Accuracy:	±[3% x (reading + offset) +1% x offset	
All Gain settings≤200mv/div	+0.2div+2mv]	
DC Measurement Accuracy:	±[3% x (reading + offset) +1% x offset	
All Gain Settings>200mv/div	+0.2div+100mv]	
	<1.7ns (200MHz)	
Rise Time (RNC value)	<2.3ns (150MHz)	
Rise fille (BNC value)	<3.5ns (100MHz)	
	<5.8ns (60MHz)	
Math Operation	+, -, *, /, FFT	
	Window Modes: Hanning, Hamming,	
FFT	Blackman, Rectangular	
	Sampling points: 1024	
Bandwidth Limiter	20MHz (-3dB)	

Horizontal System			
Real Time Sampling	Single channel below 50ns/div:1GSa/s;		
Rate	double channel: 500MSa/s		
Equivalent Sampling	< 50CS2/S		
Rate	< 500538/5		
Measure Display Modes	MAIN, WINDOW, WINDOW ZOOM, SCAN , X-Y		
Time Base Accuracy	\pm 50ppm measured over 1ms interval		
Harizantal Soon Danga	2.5 ns/div \sim 50 s/div (100MHz)		
Hunzuniai Scan Range	Scan: 100mS/div \sim 50S/div (1-2.5-5 order)		

Trigger System		
Trigger Types	Edge, Pulse Width, Video, Slope, Alternative	
Trigger Source	CH1,CH2	
Trigger Modes	Auto, normal, Single	
Trigger Coupling	AC, DC, LF reject, HF reject	
Trigger Level Range	CH1,CH2: ± 6 divisions from the center of the screen	
Trigger	Pre-trigger: (Memory depth / (2*sampling)),	
Displacement	Delay Trigger: 268.04 div	
Holdoff Range	100ns \sim 1.5s	
Edge Trigger	Edge type: Rising, Falling, Rising and Falling	
Pulse Width Trigger	Trigger Modes: $(>,<, =)$ Positive Pulse Width, $(>, <, =)$ Negative Pulse Width	
	Pulse Width Range: 20ns \sim 10s	
	Support Signal Formats: PAL/SECAM, NTSC	
Video Trigger	Trigger Conditions: odd field, even field, all lines, pointed	
	line	
Slope Trigger	(>,<,=) Positive slope, $(>,<,=)$ Negative slope	
Slope Higgel	Time: 20ns \sim 10s	
	CH1 trigger types: Edge, Pulse, Video, Slope	
Alternative mggel	CH2 trigger type: Edge, Pulse, Video, Slope	

X-Y Mode		
X-pole Input / Y-pole Input	Channel 1 (CH1) / Channel 2 (CH2)	
Sampling Frequency	25KSa/s \sim 250MSa/s (1-2.5-5 order)	

Cursor Measure			
	Vpp, Vmax, Vmin, Vamp, Vtop, Vbase, Vavg,		
	Mean,Crms, Vrms, ROVShoot, FOVShoot,		
Auto Measure (32 types)	RPREShoot, FPREShoot, Rise, Fall, Freq, Prd,		
	+Wid, -Wid, +Dut, -Dut, BWid, Phas, FRR, FRF,		
	FFR, FFF, LRR, LRF, LFR, LFF		
Cursor Measure	Manual mode, Track mode and Auto mode		

Control Panel Function			
Auto Set	Auto adjusts the vertical and horizontal scale and		
	triggers to fit current signal		
	Support 2 groups of referenced Waveforms, 20		
Sava/Basall	groups of setups, 10 groups of captured waveforms		
Save/Recall	internal storage/recall functions and USB flash driver		
	storage function.		

Hardware Frequency Counter		
Reading	1Hz	
resolution		
Range	DC coupling, 10Hz to maximal bandwidth	
Signal Types	All trigger signals (except pulse width and video trigger)	

Digital Multimeter Specifications

Environment Temperature: 73±9 F (23±5 C) Relative Humidity: <75%

Max. Display	6000 counts
Moosuro Eurotion	DC voltage, AC voltage, resistance, diode, continuity,
Measure Function	capacitance, DC current, AC current
Max Input Valtage	AC (virtual value): 750V (AC Frequency:20Hz~1kHz)
wax. Input voltage	DC:1000V
Max Input Current	AC (virtual value): 10A (AC Frequency:20Hz~1kHz)
max. Input Current	DC:10A
Input Impedance	10M

DC Voltage		
Range	Resolution	Definition
60mV	10uV	±(1%+15digit)
600mV	100uV	
6V	1mV	
60V	10mV	±(1%+5digit)
600V	100mV	
1000V	1V	

AC Voltage		
Range	Resolution	Definition
60mV	10uV	±(1%+15digit)
600mV	100uV	
6V	1mV	
60V	10mV	±(1%+5digit)
600V	100mV	
750V	1V	

Resistance		
Range	Resolution	Definition
600Ω	0.1Ω	±(1%+5digit)
6K	1Ω	
60K	10Ω	
600K	100Ω	
6M	1KΩ	
60M	10ΚΩ	

Diode and Continuity Measure		
Name	Range	
Diode	0~2V	
Continuity	<50Ω alarm	

Capacitance		
Range	Resolution	Definition
40pE	10pF ± (3	± (3%+10digit) measurements>
40hF		5nF
400nF	100pF	
4uF	1nF	+ (4%+5diait)
40uF	10nF	
400uF	100nF	

DC Current		
Range	Resolution	Definition
60mA	10uA	(19/) Edicit)
600mA	100uA	
6 A	1mA	1/1 5% (Edicit)
10A	10mA	\pm (1.5%+50lgit)

"A "range: measure period≤10 seconds, interval period≥15minutes.

AC Current		
Range	Resolution	Definition
60mA	10uA	+(1% + 5 digit)
600mA	100uA	±(1/8+50lgit)
6 A	1mA	$\pm (1.5\% \pm 5 digit)$
10A	10mA	±(1.5 %+50igit)

"A "range: measure period≤10 seconds, interval period≥15minutes.

Recorder Specifications

Total: 7M original points	Single channel: 7M	Double channel: each 3.5M
Scope Trend Plot		
Display Mode	full view and normal	
Record Length	800K points, >18 hours	
Record Channel Num.	2	
Cursor and Zoom	support	
Record Manual	support	

Multimeter Trend Plot	
Display Mode	full view and normal
Record Length	1.2 M points
Record Channel	1
Number	
Cursor and Zoom	Support
Record Manual	Support

Generic Specification

Display		
Display Mode	Color TFT 5.7 inches(145mm) diagonal Liquid	
Display Mode	Crystal Display	
Resolution	TFT 5.7 inches :320 (horizontal) pixels * 234	
	(vertical)pixels	
Display Color	24 bits	
Display Contrast (typical)	150:1	
Backlight Intensity (typical)	300 nit	
Waveform Display Range	TFT 5.7 inches 8 x 12 div	
Wave Display Mode	Dots, Vectors	
Persist	Off, 1 sec, 2 sec, 5 sec, Infinite	
Menu Display	2 sec, 5 sec, 10 sec, 20 sec, Infinite	
Scroop Savor	Off, 1 min, 2 min, 5 min, 10 min, 15 min, 30 min, 1	
Scieen Saver	hour, 2 hour, 5 hour	
Skin	Classical, Modern, Traditional, Succinct	
waveform Interpolation	Sin(x)/x, Linear	
Color model	Normal , Invert	
	Simplified Chinese, Traditional Chinese, English,	
Language	Arabic, French, German, Russian, Spanish,	
	Portuguese, Japanese, Korean, Italian	

Power		
Adapter Supply Power	Input Voltage	100-240 V 50/60Hz
Adapter Supply FOwer	Output Voltage	9V 4A
Battery Supply Power	5000mAh, 7.4VDC, pe	ersisting 5 hours
Charging time	About 4 hours	

Environments	
Tama and ma	Work: 32~105 F (0~40 C)
remperature	Storage: -4~160 F (-20 C~70 C)
Cooling	Natural Cool
Humidity	85%RH, 105 F (40 C)
Height	3000m

Mechanical		
	Length	259.5mm
Dimension	Width	163.2mm
	Height	53.3mm
Weight	1.5 kg	

Appendix B: Default Setup

Menu or	Options, Knobs or Buttons	Default setup
system		
	Coupling	DC
	BW Limit	Off
	Volts/div	Coarse
CH1, CH2	Probe	1X
	Invert	Off
	Filter	Off
	Volts/div	1.00V
	Operation	CH1+CH2
	CH1 Invert	Off
	CH2 Invert	Off
	FFT Operation:	
MATH	Source	CH1
	Window	Hanning
	FFT Zoom	1X
	Scale	dBVrms
	Display	Split
	Window	Main Time Base
	Position	0.00µs
HORIZONTAL	Sec/div	500µs
	Window Zone	50.0µs
	Trigger knob	Level
	Туре	Off
	Source	CH1
CURSOR	Horizontal (voltage)	+/-3.2divs
	Vertical (time)	+/-5divs
MEASUDE	Source	CH1
MEASURE	Туре	Average
	Three Mode Options	Sampling
ACQUIRE	Averages	16
	Sampling Method	Real Time
	Туре	Vectors
	Persist	off
	Grid	
DISPLAY	Intensity	60%
	Brightness	40%
	Format	YT
	Menu Display	Infinite

	Туре	Setups
SAVE/RECALL	Save To	Device
	Setup	No.1
REF	Source	CH1
	REFA	Off
	REFB	Off
UTILITY	Sound	On
	Frequency Counter	On
	Side USB	Computer
	Record	Off
TRIGGER (Edge)	Туре	Edge
	Source	CH1
	Slope	Rising
	Mode	Auto
	Coupling	DC
	Level	0.00V
TRIGGER (Pulse)		Pulse
	Source	CH1
	Condition	=
	Set Pulse Width	1.00ms
	Mode	Auto
	Coupling	DC
TRIGGER (Video)	Туре	Video
	Source	CH1
	Polarity	Normal
	Sync	All Lines
	Standard	NTSC
	Mode	Auto
TRIGGER (Slope)	Туре	Slope
	Source	CH1
	Condition	 ₩
	Time	1.00ms
	Mode	Auto
	Туре	Alternative
TRIGGER	Source	CH1
(Alternative)	Mode	Edge
	Coupling	DC
	Slope	Rise

Appendix C: Battery Installation

The battery of the product is unplugged from the scope. To install the battery:

- 1. Unscrew the two screws from the battery cap with a screwdriver (Figure 1).
- 2. Draw back the scope's "leg" and remove the battery cap (Figure 2).
- 3. Set the battery snugly into the battery compartment (Figure 3).
- 4. Connect the white connectors between the battery and the scope.
- 5. Replace the battery cap over the battery, and retighten the screws.

Notes:

The battery plug is designed so the battery cannot be attached with the wrong polarity.

Note that the battery cap has an "up" side and a "down" side. The serial number will be upside down if the cap is reattached upside down.

If the scope will not turn on on normally after correctly installation, it is likely that the battery is totally discharged. Plug the scope into AC power to recharge it.

Figure 1

Appendix D: Daily Maintaining and Cleaning

Daily Maintaining

Do not let the LCD exposed in the sun directly for a long period when storing or placing the product.

CAUTION: To avoid damage to the instrument or probes, do not expose them to sprays, liquids, or solvents

Cleaning

Check the instrument and the probes according to daily use situation. Please do the following steps to clean the surface of the instrument.

To clean the exterior surface, perform the following steps:

- 1. Remove loose dust on the outside of the instrument and probes with a lint-free cloth. Use care to avoid scratching the clear plastic display filter.
- 2. Use a soft cloth dampened with water to clean the instrument. Please disconnect it from all power sources firstly.

Note:

- 1. To avoid damage to the surface of the instrument or probes, do not use any abrasive or chemical cleaning agents
- 2. To avoid water causing electric short circuit or body hurt, Make sure the instrument is completely dry before reconnecting it to a power source

Options and Accessories

Included with Model AEGIS-OSC-9100 MB-W2:

- Probe Holder
- Probe Tips (3)
- Magnetic Base
- 2-Year Warranty

Additional Available Accessories:

- 9 V, 4 A power adaptor
- 1X/10X oscilloscope probes (2)
- Test leads for multimeter (2)
- Probe calibration accessory
- Rechargeable/replaceable
 5-hour battery
- USB flash drive with user manual
- AEGIS® Bearing Protection Handbook

For more information, contact:

31 Winterbrook Road Mechanic Falls, ME 04256 (866) 738-1857

> sales@est-aegis.com www.est-aegis.com

© 2015 Electro Static Technology

Form 950-1 12/15